Diophantine approximation on non-degenerate curves with non-monotonic error function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Diophantine Approximation in Non-degenerate p-adic Manifolds

S-arithmetic Khintchine-type theorem for products of non-degenerate analytic p-adic manifolds is proved for the convergence case. In the padic case the divergence part is also obtained. 1

متن کامل

Inhomogeneous Non-linear Diophantine Approximation

Let be a strictly positive monotonically decreasing function deened on the set of positive integers. Given real numbers and , consider the solubility of the following two inequalities jq + pj < (q); (1) jq + p + j < (q) (2) for integers p and q. The rst problem is said to be homogeneous and the second inho-mogeneous (see 2]). The well known theorem of Khintchine 2, 4] asserts that for almost al...

متن کامل

Diophantine Approximation and Algebraic Curves

The first topic of the workshop, Diophantine approximation, has at its core the study of rational numbers which closely approximate a given real number. This topic has an ancient history, going back at least to the first rational approximations for π. The adjective Diophantine comes from the third century Hellenistic mathematician Diophantus, who wrote an influential text solving various equati...

متن کامل

Inhomogeneous Diophantine approximation with general error functions

Let α be an irrational and φ : N → R be a function decreasing to zero. For any α with a given Diophantine type, we show some sharp estimations for the Hausdorff dimension of the set Eφ(α) := {y ∈ R : ‖nα− y‖ < φ(n) for infinitely many n}, where ‖ · ‖ denotes the distance to the nearest integer.

متن کامل

Non-degenerate Curves with Maximal Hartshorne-rao Module

Extending results for space curves we establish bounds for the cohomology of a non-degenerate curve in projective n-space. As a consequence, for any given n we determine all possible pairs (d, g) where d is the degree and g is the (arithmetic) genus of the curve. Furthermore, we show that curves attaining our bounds always exist and describe properties of these extremal curves. In particular, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2009

ISSN: 0024-6093

DOI: 10.1112/blms/bdn116